High－Speed Digital Controller－ 1 or 2 loops HA Series

HA400 HA900 HA401 HA901

General Description

The HA series are digital PID controllers with a high speed sampling time of $25 \mathrm{~ms}(0.025 \mathrm{sec})$ with high－resolution thermocouple，RTD or current voltage input，supplied with parameters settable in $1 / 100 \mathrm{sec}$ ．
A difference between HA400／900 and HA401／901 is in the autotuning．If the process is less than 30 seconds to setpoint，the HA400／900 is best suited with factory default values pre－set for fast process．
Applications in RTP（Rapid Thermal Process），RTA（Rapid Thermal Anneal）and temperature control of semiconductor manufacturing can be controlled by the HA series．The high speed sampling function also makes it suitable for other applications requiring fast control such as pressure or flow rate．

Features

顺 Ultra High Speed Sampling 0.025 sec
顺 Two Channels in One Controller
动 Ramp／Soak Program Control
it Cascade Control
is Power Feed Forward Function
it Communications

Ultra High Speed Sampling 0.025 sec

The HA series digital controller supplies feedback control 40 times in one second．It makes the HA series suitable for any application requiring fast control response and high accuracy． The PID parameters can be set in 1／100 unit which supports extremely fast and accurate control by the HA series．

Direct Function keys

Direct function keys are marked for Auto／Manual，Remote ／Local，and Run／Stop switching to eliminate error when entering changing patterns．
Used and Unused of each function key is also possible．

Two Channels in One Controller

Dual loop control can be performed with a single controller． All loops operate at 0.025 ms sampling time．

Cascade Control in One Controller

Cascade control can be performed with a single controller． Input type can be specified independently for each channel．

High-Speed Digital Controller - 1 or 2 loops HA Series

Features

Ramp / Soak Program Control

The HA Series high speed temperature controller has Multimemory Area function which stores up to 16 sets of control parameters.
Parameters stored in each memory area are the control set value, event set value, PID values, control response, ramp-tosetpoint UP and DOWN, soak time, and link area number.

Up to 32-segment ramp/soak control is available by using the memory area function (ramp-to-set point UP and DOWN, soak time, link area number).

Communications
(Optional)
The HA Series incorporates a maximum of two communication ports. The communication method can be selected from serial communication (RS-485, RS-422A, RS-232C) and Open network (DeviceNet, Profibus, CC-Link).

Numerous Inputs and Outputs

A maximum of two measuring inputs (one input can be used as a remote setpoint signal) and seven event inputs can be specified. A maximum of five outputs can be specified, and various output functions (control output, analog retransmission, event up to 4) can be allocated in output logic operation.

- Available inputs and outputs depend on the specifications.

Suitable for Various Process Control

Using industry standard DC inputs (current and voltage), the HA Series can be used in process control applications including pressure, flow rate and levels.

Autotuning

The Autotuning used on HA400/900 is suitable for a control system with a fast response. PID values can also be manually adjusted so that they may be further optimized for the processes.
Just for your information, this Autotuning is performs well for control systems in which temperature rises up to the set point in 30 seconds or faster. If the application is slower (e.g. 5 minutes to reach the set point), HA401/901 are recommended.

High-Speed Digital Controller - 1 or 2 loops
 HA Series

Specifications

Input

Number of inputs

2 points (IN1 to IN2)

- Isolated between each channel
- 2nd input (IN2) can be used as a remote input
-Cascade connection available
Input
Universal input
a) Low voltage input group

Thermocouple
: K, J, R, S, B, E, T, N (JIS/IEC) PLII (NBS), W5Re/W26Re (ASTM)

- Influence of external resistance : Approx. $0.25 \mu \mathrm{~V} / \Omega$
- Input break action : Up-scale / Down-scale (Selectable)

RTD : Pt100 (JIS/IEC), JPt100 (JIS)
\cdot Influence of input lead resistance : Approx. $0.01\left[{ }^{\circ} \mathrm{C} / \Omega\right]$ of reading

- Maximum 10Ω per wire
- Input break action : Up-scale

Low voltage : 0 to 1 V DC, 0 to 100 mV DC, 0 to 10 mV DC - Input break action: Up-scale / Down-scale (Selectable) Current : 4 to 20 mA DC, 0 to 20 mA DC

- Input break action: Uncertain (indicates a value around 0 mA)
b) High voltage input group

High voltage : 0 to 5 V DC, 1 to 5 V DC, 0 to 10 V DC

- Input break action: Uncertain (indicates a value around OV)

Sampling Time
0.025 sec

Input Digital Filter
0.01 to 10.00 sec (OFF when 0 is set.)

PV Bias

-span to +span

PV Ratio

0.500 to 1.500

Square Root Extraction

Equation : PV $=\sqrt{ }$ (Input value \times PV ratio + PV bias)
Low level cut OFF : 0.00 to 25.00% of span

Performance

Measuring Accuracy
 a) Thermocouple

Type : K, J, T, E, PLII
Less than $-100^{\circ} \mathrm{C}\left(-148^{\circ} \mathrm{F}\right): \pm 1.0^{\circ} \mathrm{C}\left(\pm 1.8^{\circ} \mathrm{F}\right)$
-100 to $500^{\circ} \mathrm{C}\left(-148\right.$ to $\left.932^{\circ} \mathrm{F}\right)$: $\pm 0.5^{\circ} \mathrm{C}\left(\pm 0.9^{\circ} \mathrm{F}\right)$
More than $500^{\circ} \mathrm{C}\left(932^{\circ} \mathrm{F}\right): \pm(0.1 \%$ of Reading +1 digit)
Type : N, S, R, W5Re/W26Re
Less than $-100^{\circ} \mathrm{C}\left(-148^{\circ} \mathrm{F}\right): \pm 2.0^{\circ} \mathrm{C}\left(\pm 3.6^{\circ} \mathrm{F}\right)$
-100 to $1000^{\circ} \mathrm{C}\left(-148\right.$ to $\left.1832^{\circ} \mathrm{F}\right): \pm 1.0^{\circ} \mathrm{C}\left(\pm 1.8^{\circ} \mathrm{F}\right)$
More than $1000^{\circ} \mathrm{C}\left(1832^{\circ} \mathrm{F}\right): \pm(0.1 \%$ of Reading +1 digit $)$
Type: B
Less than $400^{\circ} \mathrm{C}\left(752^{\circ} \mathrm{F}\right): \pm 70.0^{\circ} \mathrm{C}\left(\pm 126^{\circ} \mathrm{F}\right)$
400 to $1000^{\circ} \mathrm{C}\left(752\right.$ to $\left.1832^{\circ} \mathrm{F}\right)$: $1.0^{\circ} \mathrm{C}\left(1.8^{\circ} \mathrm{F}\right)$
More than $1000^{\circ} \mathrm{C}\left(1832^{\circ} \mathrm{F}\right): \pm(0.1 \%$ of Reading +1 digit $)$
Cold junction temperature compensation error
$\pm 1.0^{\circ} \mathrm{C}\left(1.8^{\circ} \mathrm{F}\right)\left[\right.$ at $\left.23^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\left(73.4^{\circ} \mathrm{F} \pm 3.6^{\circ} \mathrm{F}\right)\right]$
Within $\pm 1.5^{\circ} \mathrm{C}\left(\pm 2.7^{\circ} \mathrm{F}\right)$ [Between 0 and $50^{\circ} \mathrm{C}$ (14 to $122^{\circ} \mathrm{F}$)]
b) RTD

Less than $200^{\circ} \mathrm{C}\left(392^{\circ} \mathrm{F}\right)$: $\pm 0.2^{\circ} \mathrm{C}\left(\pm 0.4^{\circ} \mathrm{F}\right)$
More than $200^{\circ} \mathrm{C}\left(392^{\circ} \mathrm{F}\right): \pm(0.1 \%$ of Reading +1 digit)
c) DC voltage and DC current $\pm(0.1 \%$ of span)
Insulation Resistance
More than $20 \mathrm{M} \Omega$ (500 V DC) between measured terminals and ground More than $20 \mathrm{M} \Omega(500 \mathrm{~V}$ DC) between power terminals and ground

Dielectric Strength

1000V AC for one minute between measured terminals and ground
1500 V AC for one minute between power terminals and ground

Control

Control Method

a) Brilliant PID control with enhanced autotuning.

- Available for reverse and direct action.
b) Position proportioning control.

Major Setting Range

Set value:
Proportional band:
input)
Integral time:
Derivative time :
Control response :
Output limiter :
-5.0 to $+105.0 \%$ (High/Low individual setting)
Output change rate limiter: 0.0 to $100.0 \% / \mathrm{sec}$. (Up/Down individual setting)
Proportional cycle time: 0.1 to 100.0 sec .
Memory area :
16 sets
Motor Valve Control (position proportioning control type only)
Input resistance (feedback resistance) : 135Ω as standard
POS sampling cycle: 0.075 sec .
Neutral zone: $\quad 0.1$ to 10.0% (output), resolution 0.1%
Output: Relay output
Motor rotating speed : Suitable for ??? to ??? sec. (full open to full close)

- When motor valve control is used, neither heater break alarm nor power feed forward function is available.

Output

Main Output

Number of output :
Output function:

Output type :

Sub Output (Optional)
Number of output:
Output function:
Output type :

Up to 3 points (OUT1 to OUT3)
OUT1, 2 : Control output
OUT3: Event output or analog retransmission output (Optional)
Relay output:
Form A contact, 250V AC 3A (resistive load)
Voltage pulse output : 0/12V DC
(Load resistance : More than 600Ω)
Current output : 4 to $20 \mathrm{~mA} \mathrm{DC}, 0$ to 20 mA DC
(Load resistance : Less than 600Ω)
Continuous voltage output:
0 to 5 V DC, 1 to 5 V DC, 0 to 10 V DC
(Load resistance : More than $1 \mathrm{k} \Omega$)
SSR (Triac) output (Rated current : 0.4A)
Up to 2 points (OUT4, OUT5)
Event output (Optional)
Relay output:
Form A contact, 250V AC 1A (resistive load)

Sensor Power Supply Output (Optional)
24 V DC $\pm 5 \%$ (Max. 20mA)

- Output from OUT3.
- When sensor power supply output is specified,

OUT4 and OUT5 can not be added.

Event (Alarm) Output

Number of Event Outputs Up to 4 points (Event 1 to 4)

Alarms

Type : Deviation High, Low, High/Low, Band,
Process High, Low Set value High, Low
Differential gap: 0 to input span
Heater Break Alarm (For single phase)
CT type: CTL-6-P-N(30A), CTL-12-S56-10L-N(100A)
Display range : $\quad 0.0$ to 100.0 A
Accuracy: $\quad \pm 5 \%$ of input value or $\pm 2 \mathrm{~A}$ (whichever is larger)
Control Loop Break Alarm (LBA)
LBA time setting : $\quad 0.1$ to 7200 sec . (OFF by setting zero) LBA deadband: 0 to input span
Output
Assignable to main output (OUT3) or sub output (OUT4 to 5).

Other Functions

HOLD action (Valid for deviation/band/PV alarms only)
Selection of event action for input abnormality.

High-Speed Digital Controller - 1 or 2 loops HA Series

Specifications

Non-isolated Remote Setpoint Input
 (Optional)

- Only available in a 1 channel control type.

Input
a) 0 to 1 V DC, 0 to $100 \mathrm{mV} \mathrm{DC}, 0$ to 10 mV DC
b) 0 to 5 V DC, 1 to $5 \mathrm{~V} \mathrm{DC}, 0$ to 10 V DC
c) 4 to $20 \mathrm{mADC}, 0$ to 20 mA DC

Accuracy

0.1% of span

Event Input

(Optional)

Number of Inputs

Up to 7 points

Input Rating

Non-voltage contact input

Functions

a) Memory area selection
b) Run/Stop switching
c) Remote/Local switching
d) Auto/Manual switching

- Event input logic selection functional allocation table

	DI1	DI2	DI3	DI4	DI5	DI6	DI7
1	Memory area selection (1 to 16)				Area set	Run/Stop	Auto/Manual
2	Memory area selection (1 to 16)				Area set	Run/Stop	Remote/Local
3	Memory area selection (1 to 16)				Area set	Remote/Local	Auto/Manual
4	Memory area selection (1 to 8)			Area set	Run/Stop	Remote/Local	Auto/Manual
5	Memory area selection(1 to 8)			Area set	Remote/Local		
6	Memory area selection (1 to 8)			Area set	Auto/Manual		

Analog Retransmission Output (Optional)

Number of Outputs
Up to 3 points

- Functions are assignable to OUT1 to OUT3.

Output types

a) Measured value (PV)
b) Deviation (DV)
c) Set value (SV)
d) Manipulated output value (MV)

Communications
(Optional)

Number of communications: 2 points

Communication method: COM1: RS-485, RS-232C
COM2: RS-232C, RS-485, RS-422A DeviceNet, PROFIBUS, CC-Link

Communication speed:
2400, 9600, 19200, 38400 BPS
ANSI X3.28(1976) 2.5 A4
MODBUS
Bit format
Start bit :
Data bit :
Parity bit :
Stop bit :
Communication code :
1
7 or 8 •For MODBUS 8 bit only
Without, Odd or Even
1 or 2
ASCII(JIS) 7-bit code
Maximum connection :
RS-485, RS-422A : 31 (Address can be set from 0 to 99.) RS-232C : 1

Waterproof/Dustproof

(Optional)

General Specifications

Supply Voltage

a) 90 to 264 V AC (Including supply voltage variation) [Rating: 100 to $240 \mathrm{~V} \mathrm{AC]} \mathrm{(} 50 / 60 \mathrm{~Hz}$ common)
b) 21.6 to 26.4 V AC (Including supply voltage variation) [Rating : 24 V AC] ($50 / 60 \mathrm{~Hz}$ common)
c) 21.6 to 26.4 V DC (Ripple rate 10% p-p or less) [Rating:24VDC]

Power Consumption
HA400: Less than 22.5VA for AC type (at 240V AC) Less than 15.0VA for 24 V AC type Less than 430 mA for 24 V DC type
HA900: Less than 24.0VA for AC type (at 240V AC) Less than 16.0VA for 24 V AC type Less than 470 mA for 24 V DC type
Power Failure Effect
Not affected by power failure shorter than 20 msec , otherwise reset to the initial state. (HOT or COLD start is selectable.)

Self-Diagnostic Function

CPU power check, Adjustment data check, EEPROM check, RAM check, etc..
Operating Environments : -10 to $50^{\circ} \mathrm{C}\left[14\right.$ to $\left.122^{\circ} \mathrm{F}\right]$
5 to 95% RH.
Absolute humidity : MAX. W.C 29g/m3 dry air at 101.3 kPa .
Memory Backup : Backed up by non-volatile memory. Number of writing : Approx. 100,000 times
Net Weight
HA400: Approx. 360 g
HA900: Approx. 460 g
External Dimensions (W $\times \mathrm{H} \times \mathrm{D}$)
HA400: $\quad 48 \times 96 \times 100 \mathrm{~mm}$
HA900: $96 \times 96 \times 100 \mathrm{~mm}$

Compliance with Standards

- CSA Certified
- C-Tick Mark
- Event output logic selection functional allocation table

	OUT1	OUT2	OUT3	OUT4	OUT5
1	CH1 control output	$\begin{aligned} & \text { HBA1 (Energized) } \\ & \text { HBA2 (Energized) } \\ & \hline \end{aligned}$	Event3 (Energized) Event4 (Energized)	Event2 (Energized)	Event1 (Energized)
2	CH1 control output	HBA1 (De-energized) HBA2 (De-energized)	Event3 (De-energized) Event4 (De-energized)	Event2 (De-energized)	Event1 (De-energized)
3	CH1 control output	Event3 (Energized) Event4 (Energized) HBA1 (Energized) HBA2 (Energized)	Event2 (Energized)	Event1 (Energized)	FAIL (De-energized)
4	CH1 control output	Event3 (De-nergized) Event4 (De-nergized) HBA1 (De-energized) HBA2 (De-energized)	Event2 (De-energized)	Event1 (De-energized)	FAIL (De-energized)
5	CH1 control output	CH 2 control output	Event4 (Energized) HBA2 (Energized)	$\begin{array}{\|l\|} \hline \text { Event3 (Energized) } \\ \text { HBA1 (Energized) } \\ \hline \end{array}$	Event1 (Energized) Event2 (Energized)
6	CH1 control output	CH2 control output	Event4 (De-energized) HBA2 (De-energized)	Event3 (De-energized) HBA1 (De-energized)	Event1 (De-energized) Event2 (De-energized)
7	CH1 control output	CH2 control output	Event3 (Energized) Event4 (Energized) HBA1 (Energized) HBA2 (Energized)	Event2 (Energized)	Event1 (Energized)
8	CH1 control output	CH2 control output	$\begin{array}{\|l\|} \hline \text { Event3 (De-nergized) } \\ \text { Event4 (De-nergized) } \\ \text { HBA1 (De-nergized } \\ \text { HBA2 (De-energized) } \\ \hline \end{array}$	Event2 (De-energized)	Event1 (De-energized)
10	CH1 control output (OPEN)	CH1 control output (CLOSE)	Event3 (Energized) Event4 (Energized) HBA1 (Energized) HBA2 (Energized)	Event2 (Energized)	Event1 (Energized)
11	CH1 control output (OPEN)	CH1 control output (CLOSE)	$\begin{array}{\|l\|} \hline \text { Event3 (De-nergized) } \\ \text { Event4 (De-nergized) } \\ \text { HBA1 (De-energized) } \\ \text { HBA2 (De-energized) } \\ \hline \end{array}$	Event2 (De-energized)	Event1 (De-energized)
12	CH1 control output	Event4 (Energized) HBA2 (Energized)	Event3 (Energized) HBA1 (Energized)	Event2 (Energized)	Event1 (Energized)

*An output logic becomes OR output when two or more output functions are assigned to one output.
*When three analog outputs are selected, tha analog outputs are automatically assigned to
OUT1 through OUT3 and it has priority over the output logic selection.

[^0]
High-Speed Digital Controller - 1 or 2 loops HA Series

Model and Suffix Code

1 channel control type

[^1]${ }^{3}$ Analog output (PV, SV, etc) are assignable to OUT1 - OUT3.

Caution

- If two isolated analog outputs are required, use OUT1 (or OUT2) and OUT3. OUT1 and OUT2 are not isolated.
- To use as a position proportioning controller, two or more outputs must be supplied
- If heater break alarm is assigned to event function, current transformer (sold separately) is required.

Autotuning

The Autotuning used on HA400/900 is suitable for a control system with a fast response. PID values can also be manually adjusted so that they may be further optimized for the processes.
Just for your information, this Autotuning is performs well for control systems in which temperature rises up to the set point in 30 seconds or faster. If the application is slower (e.g. 5 minutes to reach the set point), HA401/901 are recommended.

High-Speed Digital Controller - 1 or 2 loops HA Series

Model and Suffix Code

2 channel control type

1 Only OUT1 and OUT2 can be used for control outputs.
2 Event (alarm) outputs, heater break alarm outputs are assignable to OUT3 - OUT5.
${ }^{3}$ Analog output (PV, SV, etc) are assignable to OUT1 - OUT3.

Caution

- If two isolated analog outputs are required, use OUT1 (or OUT2) and OUT3. OUT1 and OUT2 are not isolated.
- To use as a position proportioning controller, two or more outputs must be supplied.
- If heater break alarm is assigned to event function, current transformer (sold separately) is required.

Autotuning
The Autotuning used on HA400/900 is suitable for a control system with a fast response. PID values can also be manually adjusted so that they may be further optimized for the processes.
Just for your information, this Autotuning is performs well for control systems in which temperature rises up to the set point in 30 seconds or faster. If the application is slower (e.g. 5 minutes to reach the set point), HA401/901 are recommended.

High-Speed Digital Controller - 1 or 2 loops HA Series

Range and Input Table
Thermocouple, RTD, Low voltage and Current group

Input	Code			Resolution
K	K	$-200-1372^{\circ} \mathrm{C}$	$-328-2501^{\circ} \mathrm{F}$	$1^{\circ} \mathrm{C}, 0.1^{\circ} \mathrm{C}, 1^{\circ} \mathrm{F}, 0.1^{\circ} \mathrm{F}$ (Selectable)
J	J	$-200-1200^{\circ} \mathrm{C}$	$-328-2192^{\circ} \mathrm{F}$	
T	T	$-200-400^{\circ} \mathrm{C}$	$-328-752^{\circ} \mathrm{F}$	
E	E	$-200-1000^{\circ} \mathrm{C}$	$-328-1832^{\circ} \mathrm{F}$	
PLII	A	$0-1390^{\circ} \mathrm{C}$	$32-2534^{\circ} \mathrm{F}$	
N	N	$0-1300^{\circ} \mathrm{C}$	$32-2372^{\circ} \mathrm{F}$	
S	S	$-50-1768^{\circ} \mathrm{C}$	$-58-3214^{\circ} \mathrm{F}$	
R	R	$-50-1768^{\circ} \mathrm{C}$	$-58-3214^{\circ} \mathrm{F}$	
W5Re/W26Re	W	$0-2300^{\circ} \mathrm{C}$	$32-4172^{\circ} \mathrm{F}$	
B	B	$0-1800^{\circ} \mathrm{C}$	$32-3272^{\circ} \mathrm{F}$	
Pt100 (3 wire)	D	$-200-850^{\circ} \mathrm{C}$	$-328-1562^{\circ} \mathrm{F}$	$\begin{gathered} 1^{\circ} \mathrm{C}, 0.1^{\circ} \mathrm{C}, 0.01^{\circ} \mathrm{C} \\ 1^{\circ} \mathrm{F}, 0.1^{\circ} \mathrm{F}, 0.01^{\circ} \mathrm{F} \\ \text { (Selectable) } \end{gathered}$
JPt100 (3 wire)		$-200-600^{\circ} \mathrm{C}$	$-328-1112^{\circ} \mathrm{F}$	
Pt100 (4 wire)	C	$-200-850^{\circ} \mathrm{C}$	$-328-1562^{\circ} \mathrm{F}$	
JPt100 (4 wire)		$-200-600^{\circ} \mathrm{C}$	$-328-1112^{\circ} \mathrm{F}$	
0-10mV DC	3	$\begin{gathered} \text {-19999 - } 99999 \\ \text { (Programmable) } \end{gathered}$		$\begin{gathered} 1,0.1,0.01,0.001,0.0001 \\ \text { (Programmable) } \end{gathered}$
0-100mV DC				
0-1VDC				
0-20mADC	8			
4-20mADC				

High voltage group

$0-5 \mathrm{VDC}$	6	$-19999-99999$ (Programmable)	$1,0.1,0.01,0.001,0.0001$ (Programmable)
$0-10 \mathrm{VDC}$			

Remote Signal Code Table

Input type		Code
Low voltage group	$0-10 \mathrm{mV} \mathrm{DC}$	G
	$0-100 \mathrm{mV} \mathrm{DC}$	
	$0-1 \mathrm{~V}$ DC	
High voltage group	$0-5 \mathrm{~V}$ DC	V
	$0-10 \mathrm{~V}$ DC	
	$1-5 \mathrm{~V}$ DC	
Current group	$0-20 \mathrm{~mA} \mathrm{DC}$	Y
	4-20mA DC	

Power Feedback Transformer (for Power Feed Forward Input)

- Supplied when power feed forward function is specified.
- When ordering transformer for replacement, please specify one of the following model codes

Specification	Model Code
100 to 120 V AC type	PFT -01
200 to 240 V AC type	PFT -02

Current Transformer (CT)

- Sold separately

Name	Range	Model Code
Current transformer for heater break alarm	$0-30 \mathrm{~A}$	CTL-6-P-N
	$0-100 \mathrm{~A}$	CTL-12-S56-10L-N

CTL-6-P-N

CTL-12-S56-10L-N

High－Speed Digital Controller－ 1 or 2 loops HA Series

External Dimensions and Rear Terminals

HA900，HA901

1	二小90				那 12			131 ［19	
2｜｜（6）	－50	（1）	3	（2，자）	1120	［ ${ }^{\text {a }}$	（3）	14	
3｜x	${ }_{51}$	（1）		（20）	$1{ }^{27}$	［圂	$1{ }^{1}$	15 （6）	
4｜｜	S2） 6			（2）	$\\|^{12}$	128）	（2）	18 ｜1达	
5 5｜（1）	${ }^{501}$			（2）	$\\|^{20}$	장	（3）${ }^{17}$	17 ｜rer	
6 6｜ $0^{\text {20］}}$	${ }^{51} 15$	383			130	，	（3）	$18]$	
7 7（1）	E			，	｜31	1 ，	313		
8 8 장	s6			（2）	13	2－3）	2	2 \％	
	5			（2）	133	［20	12	2115	
10，（1）	88			（2）3	$]^{3}$		212	$2]$［6］	
111（1）	sole				1135		（3） 2	21 E	
（6）1	801			（\％）	｜｜3	－	（1） 2	2｜｜	

＊1 IP65 waterproof／dustproof protection is molded into case and can not be added in the field．

HA400，HA401

＊1 IP65 waterproof／dustproof protection is molded into case and can not be added in the field．

No	Description	
1 2		Power supply
3 4		Output 5 （OUT5）
5 6		Output 4 （OUT4）＊
7 8	$\begin{array}{ccc} \mathrm{NO}_{0}^{\circ} & 7^{+} & 7^{+} \\ \frac{1}{(1)} & \frac{1}{(2)}-\frac{ل}{(3)} & \frac{ل}{(4)}- \\ \hline \end{array}$	Output 3 （OUT3）＊ （1）Relay contact output （2）Voltage pulse／Current／ Voltage output （3）SSR（Triac）output （4）Sensor power supply output
9 10	$\begin{array}{ll} \square & 7^{+} \\ { }^{\mathrm{NO}}{ }_{0}^{0} \\ \frac{1}{(1)} & \frac{1}{(2)}-\frac{ل}{(3)} \end{array}$	Output 2 （OUT2）＊ （1）Relay contact output （2）Voltage pulse／Current／ Voltage output （3）SSR（Triac）output
11 12	$\begin{array}{ll} \mathrm{NO}_{0}^{\circ} & 7^{+} 7 \\ \frac{1}{(1)} & \frac{1}{(2)}-\frac{ل}{(3)} \end{array}$	Output 1 （OUT1） （1）Relay contact output （2）Voltage pulse／Current／ Voltage output （3）SSR（Triac）output

No	Description	
25		Communication （1）RS－422A （2）RS－485 （3）RS－232C
26		
27		
28		
29		
30	COM（－）	＊
31	D11	
32	DI 2 Non－voltage contact input 0	Event input 1 to 4
33	$\begin{aligned} & \text { D13 } \\ & -1 \end{aligned}$	
34	$\begin{aligned} & \text { DI4 } \\ & -0 . \end{aligned}$	
	COM（－）	＊
	D15 Non－voltage	Event input 5
36		

＊Functions (A) to (C) and types（1）to（3）must be specified when instrument is ordered as change can not be made in the field．
＊：Option

[^0]: Waterproof/dustproof protection: IP65

 - Waterproof/dustproof protection only effective from the front in panel mounted installations.

[^1]: 1 Only OUT1 can be used for control outputs. (Only OUT1 and OUT2 can be used for position proportioning control.)
 2 Event (alarm) outputs, heater break alarm outputs are assignable to OUT3- OUT5.

